Adaptative particle swarm optimization algorithm with non-iterative electrostatic repulsion and social neighborhood Algoritmo de optimización por enjambre de partículas adaptativo con repulsión electrostática no iterativa y vecindad social
نویسندگان
چکیده
Bio-inspired algorithms are algorithms inspired in the nature commonly used for solving optimization problems. A class of the bioinspired optimization algorithms is swarm algorithms which mimic the collective behavior in animals. An example is Particle Swarm Optimization (PSO) based in the social behavior of bird flocking. This paper presents a variation on the basic PSO algorithm, called A2PSO. The A2PSO has two important characteristics: non-iterative electrostatic repulsion and social neighborhood. The goal is to improve the location and interaction of the particles. Experiments were realized on benchmark test functions with unimodal and multimodal functions. The A2PSO achieves good results in solving benchmark test functions as compared to other recent important works on PSO.
منابع مشابه
Discrete Particle Swarm Optimization in the numerical solution of a system of linear Diophantine equations Optimización por Enjambre de Partículas Discreto en la Solución Numérica de un Sistema de Ecuaciones Diofánticas Lineales
This article proposes the use of a discrete version of the well known Particle Swarm Optimization, DPSO, a metaheuristic optimization algorithm for numerically solving a system of linear Diophantine equations. Likewise, the transformation of this type of problem (i.e. solving a system of equations) into an optimization one is also shown. The current algorithm is able to find all the integer roo...
متن کاملAnálisis del algoritmo de optimización por enjambre de partículas por medio de una aplicación gráfica 3D
Particle swarm optimization method has become popular in recent years, because of its efficiency and low computational cost. In this document, a brief analysis of the standard algorithm is performed by a 3D application. The source code of the application is free software and you can download at GitHub.
متن کاملA Comparative Study of Evolutionary Computation Techniques for the Generalized Assignment Problem
This paper presents a comparative study among default implementations of Genetic Algorithm, Differential Evolution and Particle Swarm Optimization for load balancing, a specific case of the Generalized Assignment Problem (GAP). Differential Evolution was found the best algorithm, and it was further tested with harder GAP instances to determine its best configuration, so as to be applied to othe...
متن کاملCombinando Multi-Visões através de um Algoritmo de Nuvens de Partículas
Classification problems can use several representations to express the same concept. Videos, for example, can be represented by their image or sound features. In recent years, researchers start to integrate these representations into models called multi-view, which can significantly improve the outcome of classification. This paper presents a study on two multi-view datasets, and introduces a n...
متن کاملAcerca del Algoritmo de Dijkstra
Dado un grafo con etiquetas no negativas, se trata de calcular el coste del camino mı́nimo desde un vértice dado al resto (ing., single-source shortest paths). La utilidad de un procedimiento que solucione esta cuestión es clara: el caso más habitual es disponer de un grafo que represente una distribución geográfica, donde las aristas den el coste (en precio, en distancia o similares) de la cone...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015